" “The saddest aspect of life right now is that science gathers knowledge faster than society gathers wisdom.” "
- Isaac Asimov -

New "Mini-Brains" Could Put Thousands of Lab Animals Out of Work

Researchers at Johns Hopkins Bloomberg School of Public Health have produced tiny brains made of human neurons and cells. These mini-brains could radically change how drugs are tested, replacing the many animals currently being used for neurological scientific research.

Shape-Shifting Material Can Lift 1,000 Times Its Own Mass

Engineers from the University of Rochester have produced a new shape-changing polymer that rapidly responds to body heat. This remarkable new mighty morphing material, which can lift objects up to 1,000 times its own mass, is showcased in the Journal of Polymer Science Part B: Polymer Physics.

NUS researchers turn paper waste into ultralight super material

A research team led by Assistant Professor Duong Hai Minh from the National University of Singapore

Magnets levitate above a superconductor: New properties of superconductors discovered

New findings may eventually lead to a theory of how superconductivity initiates at the atomic level, a key step in understanding how to harness the potential of materials that could provide lossless energy storage, levitating trains and ultra-fast supercomputers.

World's Smallest 3D Lattice Is Unbelievably Strong

Nanotechnology, the ability to manipulate structures on an atomic level, has the potential to revolutionize our world.

It took 2 decades to make this gyroidal superconductor

In an effort to eliminate the cooling required for superconductivity, scientists have created a superconductor with a porous, 3D gyroidal structure.

New Super-Compressible Materials Deform Like Mechanisms at Molecular Scale

When you compress most materials, you squash their atoms or molecules up against each other, shortening the bonds between them. But a new kind ultra-compressible material acts like a set of gears and springs that shrink in size.

Completely new kind of polymer could lead to artificial muscles, self-repairing materials

Imagine a polymer with removable parts that can deliver something to the environment and then be chemically regenerated to function again. Or a polymer that can contract and expand the way muscles do.

MIT breakthrough means your next computer could be even thinner and flexible too

It's impressive to see how thin some laptops have become these days, but that's nothing compared to the ultra-thin machines of the future – which may be closer to reality thanks to a new chip production breakthrough from MIT.

New Stem Cell Treatment "Switches Off" Type 1 Diabetes

For those with type 1 diabetes, regularly injecting themselves with insulin is part and parcel of their daily lives. This form of treatment hasn't advanced much for nearly a century, so it will come as good news that researchers at the Massachusetts Institute of Technology (MIT) are on the verge of a breakthrough.

Glowing 4D-printed flowers could pave way for replacement organs

This delicate, glowing flower could one day save your life. It’s the latest example of “4D printing” – 3D printed objects that change their shape over time – and it can move in a way that mimics natural processes. Similar materials could find a use in creating replacement organs in our bodies.

First materials woven at atomic and molecular levels: Weaving a new story for COFS and MOFs

Scientists have woven the first 3-D covalent organic frameworks (COFs) from helical organic threads. The woven COFs display significant advantages in structural flexibility, resiliency and reversibility over previous COFs.

Researchers start to understand how the environment impacts state of mind

Anxiety disorder is the most common mental illness, affecting at least one in five adults. In their latest study, scientists at the Max Planck Institute of Psychiatry in Munich have shown that an enzyme called Dnmt3a is crucial in how the frontal cortex mediates stress-induced anxiety. Manipulation of this enzyme might represent a new therapeutic target.

Cells play 'telephone game' before making a move

To decide whether and where to move in the body, cells need to read chemical signals in their environment—and they don’t act alone during the process.