A cosmic superbubble

ESO’s Very Large Telescope captured this striking view of the nebula around the star cluster NGC 1929 within the Large Magellanic Cloud, a satellite galaxy of our own Milky Way. A colossal example of what astronomers call a superbubble dominates this stellar nursery. It is being carved by the winds from bright young stars and the shockwaves from supernova explosions.

Could the Big Bang have been a quick conversion of antimatter into matter?

(PhysOrg.com) -- Suppose at some point the universe ceases to expand, and instead begins collapsing in on itself (as in the “Big Crunch” scenario), and eventually becomes a supermassive black hole. The black hole’s extreme mass produces an extremely strong gravitational field. Through a gravitational version of the so-called Schwinger mechanism, this gravitational field converts virtual particle-antiparticle pairs from the surrounding quantum vacuum into real particle-antiparticle pairs. If the black hole is made from matter (antimatter), it could violently repel billions and billions of antiparticles (particles) out into space in a fraction of a second, creating an ejection event that would look quite similar to a Big Bang.

New planet discovered in Trinary star system

Until recently, astronomers were highly skeptical of whether or not planets should be possible in multiple star systems. It was expected that the constantly varying gravitational force would eventually tug the planet out of orbit. But despite doubts, astronomers have found several planets in just such star systems. Recently, astronomers announced another, this time in the trinary star HD 132563.

Most distant quasar found

A team of European astronomers has used ESO’s Very Large Telescope and a host of other telescopes to discover and study the most distant quasar found to date. This brilliant beacon, powered by a black hole with a mass two billion times that of the Sun, is by far the brightest object yet discovered in the early Universe. The results will appear in the 30 June 2011 issue of the journal Nature.

The flames of Betelgeuse

Using the VISIR instrument on ESO’s Very Large Telescope (VLT), astronomers have imaged a complex and bright nebula around the supergiant star Betelgeuse in greater detail than ever before. This structure, which resembles flames emanating from the star, is formed as the behemoth sheds its material into space.

Inside FAST, soon to be the world’s biggest and baddest radio telescope

The Five-hundred-meter Aperture Spherical radio Telescope (FAST), under construction in Guizhou Province in southern China, will be able to see more than

Pentagon dreams of Star Trek interstellar travel

The Defense Department first proposed Star Wars. Now it wants Star Trek.

NASA's Chandra finds massive black holes common in early universe

Using the deepest X-ray image ever taken, astronomers found the first direct evidence that massive black holes were common in the early universe. This discovery from NASA

UK and European space agencies give a go for Skylon spaceplane

After 30 years of development, the UK and European space agencies have given a go for the Skylon Spaceplane.

Seeing the planets for the trees

A recent study says that a particular mathematical technique could be used to detect forests on extrasolar planets.

Planets that have no stars: New class of planets discovered

(PhysOrg.com) -- University of Notre Dame astronomer David Bennett is co-author of a new paper describing the discovery of a new class of planets -- dark, isolated Jupiter-mass bodies floating alone in space, far from any host star. Bennett and the team of astronomers involved in the discovery believe that the planets were most likely ejected from developing planetary systems.

Mini black holes that look like atoms could pass through Earth daily

(PhysOrg.com) -- In a new study, scientists have proposed that mini black holes may interact with matter very differently than previously thought. If the proposal is correct, it would mean that the time it would take for a mini black hole to swallow the Earth would be many orders of magnitude longer than the age of the Universe.