(PhysOrg.com) -- During the past few years, CERN physicist Dragan Hajdukovic has been investigating what he thinks may be a widely overlooked part of the cosmos: the quantum vacuum. He suggests that the quantum vacuum has a gravitational charge stemming from the gravitational repulsion of virtual particles and antiparticles. Previously, he has theoretically shown that this repulsive gravity can explain several observations, including effects usually attributed to dark matter. Additionally, this additional gravity suggests that we live in a cyclic Universe (with no Big Bang) and may provide insight into the nature of black holes and an estimate of the neutrino mass. In his most recent paper, published in Astrophysics and Space Science, he shows that the quantum vacuum could explain one more observation: the Universes accelerating expansion, without the need for dark energy.
(PhysOrg.com) -- For the first time, astronomers have mapped dark matter on the largest scale ever observed. The results, presented by Dr Catherine Heymans of the University of Edinburgh, Scotland, and Associate Professor Ludovic Van Waerbeke of the University of British Columbia, Vancouver, Canada, are being presented today to the American Astronomical Society meeting in Austin, Texas. Their findings reveal a Universe comprised of an intricate cosmic web of dark matter and galaxies that spans more than one billion light years.
Scientists have independently made the largest direct measurements of the invisible scaffolding of the universe, using the gravitational lensing effect known as
Astronomers have created a vast cosmic map revealing an intricate web of dark matter and galaxies spanning a distance of one billion light-years.
(PhysOrg.com) -- Earlier this year, PhysOrg reported on a new idea that suggested that gravitational charges in the quantum vacuum could provide an alternative to dark matter. The idea rests on the hypothesis that particles and antiparticles have gravitational charges of opposite sign. As a consequence, virtual particle-antiparticle pairs in the quantum vacuum form gravitational dipoles (having both a positive and negative gravitational charge) that can interact with baryonic matter to produce phenomena usually attributed to dark matter. Although CERN physicist Dragan Slavkov Hajdukovic, who proposed the idea, mathematically demonstrated that these gravitational dipoles could explain the observed rotational curves of galaxies without dark matter in his initial study, he noted that much more work needed to be done.
Scientists all over the world are working feverishly to find the dark matter in the universe. Now researchers have taken one step closer to solving the enigma with a new method.
(PhysOrg.com) -- Like all galaxies, our Milky Way is home to a strange substance called dark matter. Dark matter is invisible, betraying its presence only through its gravitational pull. Without dark matter holding them together, our galaxy
(PhysOrg.com) -- “We know that about 25% of the matter in the universe is dark matter, but we don’t know what it is,” Michael Kesden tells PhysOrg.com. “There are a number of different theories about what dark matter could be, but we think one alternative might be very small primordial black holes.”
(PhysOrg.com) -- Physicists are closer than ever to finding the source of the Universe
The IceCube Neutrino Observatory, built over a decade at a cost of $271 million, is buried under the South Pole... and longer than the world
(PhysOrg.com) -- In the never ending search for proof that dark matter really exists, new findings have emerged from a team working under a big mountain in Italy. The group, from the Max Planck Institute in Germany, have pre-published a paper on arXiv, and have also given a talk at the Topics in Astroparticle and Underground Physics conference in Munich where they describe how their CRESST II detector has recorded 67 events which they say cannot be explained by anything other than Weakly Interacting Massive Particles (WIMPS), a type of dark matter.
Large cosmic structures made up of dark and normal matter evolve along the same lines -- this is one of the most important conclusions emerging from the latest computer simulations.
(PhysOrg.com) -- One of the biggest unsolved problems in astrophysics is that galaxies and galaxy clusters rotate faster than expected, given the amount of existing baryonic (normal) matter. The fast orbits require a larger central mass than the nearby stars, dust, and other baryonic objects can provide, leading scientists to propose that every galaxy resides in a halo of (as yet undetectable) dark matter made of non-baryonic particles. As one of many scientists who have become somewhat skeptical of dark matter, CERN physicist Dragan Slavkov Hajdukovic has proposed that the illusion of dark matter may be caused by the gravitational polarization of the quantum vacuum.
Astronomers using NASA's Hubble Space Telescope have ruled out an alternate theory on the nature of dark energy after recalculating the expansion rate of the universe to unprecedented accuracy.